
 UltraLiM: In-Memory Boolean Logic 
Architecture Using UltraRAM

movements but also leverages the extensive memory 
bandwidth to facilitate parallel processing. 

To realize an in-memory computing system, it is essential 
to enable the memory systems to execute the basic Boolean 
logic operations, which are the foundational elements of any 
processing unit. Moreover, most of the data-intensive 
applications rely on simple Boolean logic operations on a 
massive scale. Additionally, ensuring the storage and security 
of the ever-increasing data volumes pose significant 
challenges. Integrity verification, encryption, and decryption 
of stored data play crucial roles in this regard, often involving 
Boolean XOR operations between the stored data and 
relevant keys [9], [10].  

In this work, we capitalize on the unique attributes of 
UltraRAM-based memory system [11] to perform logic-in-
memory. To date, charge-based static random-access 
memory (SRAM), dynamic random-access memory 
(DRAM), and flash have been the mainstream storage 
technologies and have dominated the global market [12], 
[13]. However, none of these memory technologies fulfill the 
required features for a ‘universal memory’, capable of 
serving as both long-term storage and active memory. A 
‘universal memory’ should feature fast speed, non-volatility, 
low voltage operation, low energy requirement, high 
endurance, high retention, and high cost-efficiency to satisfy 
the memory requirements in different applications [14]. 
UltraRAM [15] holds promise in achieving all these 
requirements of becoming a ‘universal memory’. 

Our work introduces an in-memory computing 
framework so that we can utilize the unique features of 
UltraRAM technology. We focus on executing Boolean logic 
operations, such as NOT, NAND, NOR, and XOR, by 
integrating the UltraRAM-based memory system with 
specially designed peripheral circuitry.  The key 
contributions of this work include-  
- Developing an in-memory computing system with an

UltraRAM-based memory array
- Designing appropriate peripheral circuitry for

UltraRAM technology to execute various Boolean logic
operations in a single cycle

- Leveraging the separate read-write path capability of
UltraRAM-based memory systems to optimize the read
operation and achieve improved sense margin

- Developing a HSPICE framework and verifying the
functionality of in-memory logic operations.
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Abstract— Conventional computing architectures encounter 
‘von Neumann’ and ‘memory wall’ bottlenecks which arise due 
to the back-and-forth data movement between the physically 
separate memory and processing units and the speed mismatch 
between them, respectively. These bottlenecks hurt both energy 
efficiency and the throughput of computing systems. To address 
these challenges, in-memory computing architectures have 
emerged as a promising alternative. They reduce the need for 
frequent data movement by executing different computing tasks 
inside the memory system. Here,  we present UltraLiM, a logic-
in-memory architecture using the UltraRAM-based memory 
system. UltraRAM holds the promise of developing a ‘universal 
memory’, overcoming the limitations of charge-based memories 
thanks to their non-volatile behavior with lower operating 
voltage. This work presents an in-memory computing 
architecture that integrates an UltraRAM-based memory array 
with a custom-designed peripheral circuitry. With this 
architecture, we can perform various in-memory Boolean logic 
operations (such as NOT, NAND, NOR, and XOR) in a single 
cycle. Leveraging the separate read-write paths in the 
UltraRAM-based memory array, we optimize read operations 
without encountering design conflicts. This optimization 
enhances the sense margin, enabling the use of simpler 
peripheral circuitry for in-memory logic operations. 

Keywords— Boolean logic, in-memory computing, logic-in-
memory, UltraRAM. 

I. INTRODUCTION

The rise of artificial intelligence, the widespread use of 
portable smart devices, and the prevalence of social media 
have led to an unprecedented increase in data volumes. 
Coping with the storage and processing demands of this 
massive data presents a formidable challenge for engineers. 
Furthermore, traditional computing architectures rely on 
frequent back-and-forth data transfers between memory and 
processing units, a process known for its high energy 
consumption [1], [2]. Recent studies by Google indicates that 
approximately 20-42% of energy is spent on driving the data 
bus responsible for these transfers [3], [4]. Moreover, the 
inherent speed mismatch between processing units and 
memory often leads to processing units idling while awaiting 
data transactions with memory [5]. In response to these 
challenges, there is a growing interest in in-memory or near-
memory computing approaches for handling data-intensive 
applications [6]–[8]. The fundamental promise of this 
approach is to empower the memory system to perform 
certain computing tasks. By doing so, in-memory computing 
not only reduces the overhead associated with data 

979-8-3315-3477-6/25/$31.00 ©2025 IEEE

20
25

 IE
EE

 C
om

pu
te

r S
oc

ie
ty

 A
nn

ua
l S

ym
po

si
um

 o
n 

V
LS

I (
IS

V
LS

I)
 | 

97
9-

8-
33

15
-3

47
7-

6/
25

/$
31

.0
0 

©
20

25
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IS

V
LS

I6
51

24
.2

02
5.

11
13

03
53

Authorized licensed use limited to: Lancaster University. Downloaded on September 15,2025 at 11:24:24 UTC from IEEE Xplore.  Restrictions apply. 



We start with an overview of UltraRAM technology, 
followed by a discussion on UltraRAM-based logic-in-
memory architecture. Subsequently, we talk about the 
simulation framework used in this work. Finally, we present 
the simulated results for both memory read and write, and 
various in-memory logic operations.  

II. ULTRARAM TECHNOLOGY 
The UltraRAM device incorporates a triple-barrier 

resonant tunneling (TBRT) structure, employing multiple 
stacks of InAs quantum wells and AlSb barriers [16]. The 
schematic of this device is shown in Fig. 1(a). The unique 
TBRT structure enables UltraRAM to reconcile the 
conflicting requirements of non-volatility and low energy 
consumption, essential for a ‘universal memory’ solution. In 
UltraRAM, the storage of logic ‘0’ (‘1’) is performed by 
trapping (erasing) electrons into (from) the floating gate 
(FG). Due to its low voltage switching capability, non-
volatile nature, and small capacitance, UltraRAM achieves 
orders of magnitude lower switching energy than DRAMs 
and flash memories [16]. Moreover, UltraRAM boasts 
impressive data retention exceeding 1000 years and 
endurance surpassing 107 cycles [16]. 

In UltraRAM, an Al2O3 layer is used to separate FG from 
the control gate (CG) and an n-type InAs is used to form the 
channel of the device. The TBRT structure is formed by 
stacking multiple thin layers of InAs/AlSb between FG and 
the channel. In the absence of any bias between CG and BG 
(𝑉𝐶𝐺−𝐵𝐺 = 0), the TBRT structure prevents the flow of any 
electron to FG. However, when a sufficiently strong bias is 
applied (𝑉𝐶𝐺−𝐵𝐺 ≥ 2𝑉), electrons can be trapped into the FG 
which is the write ‘0’ operation. Conversely, a bias with 
opposite polarity ( 𝑉𝐶𝐺−𝐵𝐺 ≤ −2𝑉 ) removes the stored 
electrons from the FG  which is the write ‘1’ operation. 
Therefore, writing the memory state into an UltraRAM 
device requires only an appropriate bias to be applied 
between the CG and the BG (Fig. 1(b)). 

The I-V characteristics of an UltraRAM device is 
illustrated in Fig. 1(b), showing that even in the absence of 
any bias between the CG and the BG, a certain source-drain 
bias (𝑉𝑆−𝐷) can create distinguishable separation between the 
channel currents of the device in two logic states. Therefore, 

reading the memory state stored in a cell only needs the 
application of a suitable 𝑉𝑆−𝐷 while maintaining 𝑉𝐶𝐺−𝐵𝐺 = 0.  

III. ULTRALIM: ULTRARAM-BASED LOGIC-IN-MEMORY 
In this work, we utilize the UltraRAM-based memory 

array reported in [11] to perform in-memory computing. Fig. 
2(a) illustrates UltraRAM-based logic-in-memory 
architecture. In UltraRAM-based memory array, during the 
write operations in a specific cell, we need to apply biases to 
the bit lines (BLs) and the write word lines (WWLs)  which 
will result in the application of the write voltage (𝑉𝑊𝑅𝐼𝑇𝐸) 
between the CG and BG contacts of that specific cell. For 
read operation in any specific cell of the array, we need to 
apply voltage biases to the read word lines (RWLs) and sense 
lines (SLs) so that the read voltage (𝑉𝑅𝐸𝐴𝐷 ) gets applied 
between the S and D contacts of the cell. This array benefits 
from the use of two separate paths for the read and write 
operations.  

During the read operation, the value of 𝑉𝑅𝐸𝐴𝐷 dictates the 
SL current and the separation between the two state currents 
( Δ𝐼𝑆−𝐷 ). Δ𝐼𝑆−𝐷 , representing the sense margin, directly 
influences the scalability, energy efficiency, and area 
efficiency of memory  and in-memory computing 
applications. Δ𝐼𝑆−𝐷 can be increased by applying a higher 
𝑉𝑅𝐸𝐴𝐷 . The separate read-write path capability of UltraRAM-
based memory array allows us to optimize the read operation 
and improve the sense margin without encountering any 
conflict between the read and write operations. 

To execute in-memory computing tasks using the 
UltraRAM-based memory system, we employ a modified 
peripheral circuitry [10], shown in Fig. 2(b), in each column 
of the memory array. This circuitry comprises a current 
mirror, two current sense amplifiers (CSAs), an inverter, and 
an AND gate. It takes the SL current of each column as the 
input and generates a binary output based on the level of SL 
current and preset reference currents of the two CSAs. Fig. 
2(c) presents the schematic of a CSA used in the peripheral 
circuitry which was adopted from [17], [18]. The advantage 
of this peripheral circuitry lies in its ability to execute both 
memory read and various in-memory Boolean logic 
operations (NOT, NAND, NOR, and XOR) with the same 
setup. We can achieve this versatility by selecting suitable 

 
Fig. 1.  (a) Device structure, (b) I-V characteristics (inset shows the symbol), and (c) modeling approach of the UltraRAM device. 
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reference currents for the CSAs. Therefore, we utilize a 
reference generator to select the suitable reference currents 
for performing different operations. 

In computing mode, the read voltage is applied between 
the RWLs and SLs, ensuring the application of the necessary 
voltage between the S and D contacts of specific UltraRAM 
cells for performing computation on the stored data in those 
cells. Based on biasing and the memory states stored in the 
activated cells, different levels of SL current flow in each 
column. Table I presents the truth table for performing in-
memory Boolean logic operations, along with corresponding 
SL current levels for different combinations of logic states 
stored in the activated cells. Here, 𝐼0  and 𝐼1  represent the 
amount of channel current that flows through the UltraRAM 

cell storing logic ‘0’ and ‘1’ states, respectively. Now, to 
reconfigurably perform both memory read and logic-in-
memory operations with the same peripheral circuitry, we 
need to choose the suitable reference currents ( 𝐼𝑅𝐸𝐹1  and 
𝐼𝑅𝐸𝐹2 ) for the CSAs. Table II outlines the conditions for 
selecting suitable values of 𝐼𝑅𝐸𝐹1  and 𝐼𝑅𝐸𝐹2  to execute 
memory read-write and various logic operations.  

During memory read and NOT operations, only one cell 
is activated while NAND, NOR, and XOR operations require 
activation of two cells. The current contribution of activated 
cells is fed into the peripheral circuitry which sets the gate 
voltage of a specific transistor in each CSAs. Comparison of 
these voltages with reference voltages produces binary 
outputs. Among these operations, only one CSA is sufficient 
to execute memory read, NOT, NAND, and NOR operations. 
Therefore, we choose 𝐼𝑅𝐸𝐹1 and 𝐼𝑅𝐸𝐹2 in a way so that one of 
the CSAs always provides logic ‘1’ output and the other CSA 
provides the output of the intended operation. Finally, after 
performing the AND operation between the outputs of the 
two CSAs, the peripheral circuitry generates the final output 
for the performed operation. To perform the XOR operation 
in single cycle, we utilize the complete capability of the 
peripheral circuitry. Here, two complementary reference 
currents are chosen for the two CSAs to separate out the logic 
‘01’ and ‘10’ combinations from the others. 

IV. SIMULATION FRAMEWORK 
To simulate the UltraRAM-based in-memory logic 

operations, we develop a simulation framework in HSPICE.  
To accurately replicate the characteristics of UltraRAM 
devices, we utilize a Verilog-A-based compact model from 
[11]. Fig. 1(c) provides an overview of the modeling 
approach. The model utilizes a modified version of the 

Table I: Truth Table for Logic-in-Memory Operations 

𝒙𝟏 𝒙𝟐 SL Current (𝑰𝑺𝑳) 
Logic Operations 

NAND NOR XOR 

0 0 𝐼00 = 2 × 𝐼0 1 1 0 

0 1 𝐼01 = 𝐼0 + 𝐼1 1 0 1 

1 0 𝐼10 = 𝐼1 + 𝐼0 1 0 1 

1 1 𝐼11 = 2 × 𝐼1 0 0 0 
 
 

 
Fig. 2.  (a) Schematic of the UltraRAM-based logic-in-memory architecture. Schematics of the (b) designed peripheral circuitry and (c) a current sense 
amplifier.  

I S
L

1

RWL1

RWL2

RWL3

I S
L

2

I S
L

3

SA

SA

Out1
SEN

R
ef

er
en

ce
 G

en
er

at
o

r

opcode

I
R

E
F

1

IREF1-READ

IREF1-NAND

IREF1-NOR

IREF1-XOR

M
U
X

I
R

E
F

2

M
U
X

IREF1-READ

IREF1-NAND

IREF1-NOR

IREF1-XOR

SA

SA

Out2
SEN

SA

SA

Out3
SEN

WWL1

WWL2

WWL3

BL1

BL2 BL3

C
u

rr
en

t 
S

en
se

 A
m

p
li

fi
er

S
en

se
 A

m
p

li
fi

er

Table II: Conditions for Choosing Reference Currents 

Operations Condition for 𝑰𝑹𝑬𝑭𝟏 Condition for 𝑰𝑹𝑬𝑭𝟐 

Read 𝐼0 < 𝐼𝑅𝐸𝐹1 < 𝐼1 𝐼𝑅𝐸𝐹2 > 𝐼1 

NOT 𝐼𝑅𝐸𝐹1 < 𝐼0 𝐼0 < 𝐼𝑅𝐸𝐹2 < 𝐼1 

NAND 𝐼𝑅𝐸𝐹1 < 𝐼00 𝐼01 < 𝐼𝑅𝐸𝐹2 < 𝐼11 

NOR 𝐼𝑅𝐸𝐹1 < 𝐼00 𝐼00 < 𝐼𝑅𝐸𝐹2 < 𝐼01 

XOR 𝐼00 < 𝐼𝑅𝐸𝐹1 < 𝐼01 𝐼01 < 𝐼𝑅𝐸𝐹2 < 𝐼11 
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Boltzmann growth function to mimic the I-V characteristics 
of UltraRAM devices. The function is as follows-   

  𝐼𝑆−𝐷(𝑉𝐶𝐺−𝐵𝐺 , 𝑉𝑆−𝐷) =  
𝑉𝑆−𝐷

𝑉𝑆−𝐷
0 × [

𝐴1−𝐴2

1+𝑒

𝑉𝐶𝐺−𝐵𝐺−𝑉𝐶𝐺−𝐵𝐺
0

𝑑𝑥

+ 𝐴2] (1)  

 Here, A1 and A2 are fitting parameters. The values of 
different parameters of equation (1) for two states of the 
device are outlined in Table III. The model was calibrated 
with the experimental I-V characteristics of UltraRAM 
device reported in [16]. For simulating the CMOS transistors 
(FinFETs) used in the peripheral circuitry, we adopt 14 nm 
PTM (Predictive Technology Model) [19] transistors. 

V. SIMULATION RESULTS 
Using our developed simulation framework, we first 

showcase simulated results for memory write operations of 
the UltraRAM-based memory system, focusing on a 
3 × 3 array. To perform various in-memory computing 
operations, we need to program the memory array by writing 
specific memory state into specific cells of the array. 
Therefore, we demonstrate how to perform the write 
operation into a specific cell (1, 1) in Fig. 3. For writing into 
a specific cell, we adopt the 𝑉/2 biasing scheme [20] for the 
BLs and WWLs. Specifically, to write into the (1, 1) cell, we 
apply 𝑉𝑊𝑅𝐼𝑇𝐸  (±2.3 𝑉) to BL1 and 𝑉𝑊𝑅𝐼𝑇𝐸

2
 (±1.15 𝑉) to other 

BLs. Additionally, we apply 0 V to WWL1 and 𝑉𝑊𝑅𝐼𝑇𝐸

2
 to 

other WWLs. As shown in Fig. 3(a) and (b), this biasing 
scheme ensures that the (1, 1) cell receives 𝑉𝑊𝑅𝐼𝑇𝐸, while the 
half-accessed cells (those in the same row or same column as 
the accessed cell) receive 𝑉𝑊𝑅𝐼𝑇𝐸

2
 (insufficient to alter their 

states), and unaccessed cells receive 0 V between the CG and 
BG contacts. It is noteworthy that before applying biases for 
write ‘0’ (‘1’) operations, all cells are initialized to logic ‘1’ 
(logic ‘0’) state. To verify successful write operations, we 
apply a 𝑉𝑆−𝐷 of 0.2 V via RWLs and SLs (not necessary for  
the write operation).  Fig. 4(c) and (d) show switching of the 
channel resistance during the two write operations. For the 

 
Fig. 3.  Transient dynamics of voltage between the CG and the BG 
contacts of UltraRAM cells in the array during (a) write ‘1’ and (b) write 
‘0’ operations. Switching of the channel resistance of UltraRAM devices 
during (c) write ‘1’ and (d) write ‘0’ operations.  
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Table III: Values of Different Model Parameters. 

Parameters State = 1 State = 0 

A1 0.19196 0.19259 

A2 0.32938 0.32979 

𝑉𝐶𝐺−𝐵𝐺
0  -1.35027 -0.81267 

dV 0.45746 0.47148 
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same 𝑉𝑆−𝐷 , the cell storing logic ‘1’ shows lower channel 
resistance than the cell storing logic ‘0’.  

We proceed to demonstrate the simulation of in-memory 
Boolean logic operations. First, we simulate memory read 
and in-memory NOT operations utilizing the designed 
peripheral circuitry shown in Fig. 2. To demonstrate the read 
and NOT operations, we activate (1, 1) and (2, 1) cells in the 
array and tore logic ‘0’ and ‘1’ into these cells, respectively 
(Fig. 4(a)). To activate these cells, we apply a 𝑉𝑅𝐸𝐴𝐷  of 0.6 V 
with the help of RWLs and SLs (Fig. 4(a) and (b)). This 
results in two distinct levels of current in the corresponding 
SLs (SL1 and SL2) for the two memory states (Fig. 4(c)). To 
perform both memory and computing operations with the 
same peripheral circuitry, careful selection of 𝐼𝑅𝐸𝐹1 and 𝐼𝑅𝐸𝐹2 
is necessary. For memory read and in-memory NOT 
operations, we choose 𝐼𝑅𝐸𝐹1 = 1.9 𝑚𝐴  and 𝐼𝑅𝐸𝐹2 = 2 𝑚𝐴 , 
and 𝐼𝑅𝐸𝐹1 = 1.8 𝑚𝐴  and 𝐼𝑅𝐸𝐹2 = 1.9 𝑚𝐴,  respectively. 
Upon activating the sense enable (SEN) signal of the CSAs 
in the peripheral circuitry, each CSA generates logic ‘0’ or 
‘1’ output based on the comparison between the SL current 
and the set reference current. Using the outputs of the two 
CSAs, the peripheral circuitry generates the final output for 
the performed operation as shown in Fig. 4(d) and (e). Here, 
the peripheral circuitry of first and second columns (Out1 and 

Out2, respectively) generates the final output of these 
operations for logic ‘0’ and ‘1’ state, respectively.  

Next, we simulate the 2-input logic operations such as 
NAND, NOR, and XOR by activating the first two rows in the 
array through the application of appropriate biases to the 
RWLs (Fig. 5(a)). Here, we program the cells in the activated 
rows in a way so that the first, second, and third columns 
correspond to logic ‘00’, ‘01’ or ‘10’, and ‘11’ conditions, 
respectively. The required biasing condition to activate the 
rows is shown in Fig. 5(c). Now, due to the biasing and 
programing of the memory array, we get different levels of 
current in the corresponding SLs (SL1, SL2, SL3) for different 
combinations of logic states (‘00’, ‘01’ or ‘10’, and ‘11’, 
respectively) of the activated cells (Fig. 5(d)). A sense margin 
of 85 𝜇𝐴  is obtained between the adjacent current levels. 
Then, again to configure the peripheral circuitry for different 
logic operations, we need to choose suitable values for 
𝐼𝑅𝐸𝐹1 and 𝐼𝑅𝐸𝐹2 . Fig. 5(b) outlines the values of 𝐼𝑅𝐸𝐹1 and 
𝐼𝑅𝐸𝐹2  used in this work for executing different logic 
operations. When SEN is enabled, the peripheral circuitry 
generates the final binary output for the executed operations 
with the help of two CSAs (Fig. 5(e)-(g)). Here, for the logic 
operations, the peripheral circuitry of the first three columns 
show the outputs corresponding to different logic 
combinations of the activated cells.  

 
Fig. 5.  (a) Programming of the memory array and (b) the selected values of the reference currents for the two CSAs in the 
peripheral circuitry to execute in-memory NAND, NOR, and XOR operations. (c) Voltage biases applied to RWLs and SEN to activate the required cells. 
(d) SL current levels corresponding to the stored states in the activated cells. Outputs of the peripheral circuitry during in-memory (e) NAND, (f) NOR, and 
(g) XOR operations.  
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VI. CONCLUSION 
 In this work, we introduce an innovative in-memory 

computing architecture tailored for UltraRAM-based memory 
technology. Central to our framework is the development of a 
novel peripheral circuitry capable of dynamically executing 
memory read operation and a spectrum of in-memory Boolean 
logic operations, including NOT, NAND, NOR, and XOR. 
This circuitry's adaptability enables seamless transition 
between memory-centric tasks and computational operations, 
all within a single cycle. A key advantage of our approach lies 
in its ability to unify memory and logic functionalities, 
streamlining computational processes and reducing overall 
complexity. Furthermore, we demonstrate how the distinct 
read-write path feature inherent in UltraRAM devices can be 
harnessed to optimize read operations, thereby enhancing the 
efficacy of in-memory computing tasks. Through this 
integrated framework, we unlock the full potential of 
UltraRAM technology, paving the way for efficient and 
versatile computing paradigms that transcend traditional 
memory architectures. 
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