
 UltraLiM: In-Memory Boolean Logic
Architecture Using UltraRAM

movements but also leverages the extensive memory
bandwidth to facilitate parallel processing.

To realize an in-memory computing system, it is essential
to enable the memory systems to execute the basic Boolean
logic operations, which are the foundational elements of any
processing unit. Moreover, most of the data-intensive
applications rely on simple Boolean logic operations on a
massive scale. Additionally, ensuring the storage and security
of the ever-increasing data volumes pose significant
challenges. Integrity verification, encryption, and decryption
of stored data play crucial roles in this regard, often involving
Boolean XOR operations between the stored data and
relevant keys [9], [10].

In this work, we capitalize on the unique attributes of
UltraRAM-based memory system [11] to perform logic-in-
memory. To date, charge-based static random-access
memory (SRAM), dynamic random-access memory
(DRAM), and flash have been the mainstream storage
technologies and have dominated the global market [12],
[13]. However, none of these memory technologies fulfill the
required features for a ‘universal memory’, capable of
serving as both long-term storage and active memory. A
‘universal memory’ should feature fast speed, non-volatility,
low voltage operation, low energy requirement, high
endurance, high retention, and high cost-efficiency to satisfy
the memory requirements in different applications [14].
UltraRAM [15] holds promise in achieving all these
requirements of becoming a ‘universal memory’.

Our work introduces an in-memory computing
framework so that we can utilize the unique features of
UltraRAM technology. We focus on executing Boolean logic
operations, such as NOT, NAND, NOR, and XOR, by
integrating the UltraRAM-based memory system with
specially designed peripheral circuitry. The key
contributions of this work include-
- Developing an in-memory computing system with an

UltraRAM-based memory array
- Designing appropriate peripheral circuitry for

UltraRAM technology to execute various Boolean logic
operations in a single cycle

- Leveraging the separate read-write path capability of
UltraRAM-based memory systems to optimize the read
operation and achieve improved sense margin

- Developing a HSPICE framework and verifying the
functionality of in-memory logic operations.

Shamiul Alam1, Kazi Asifuzzaman2, and Ahmedullah Aziz1*

1Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37996, USA
2 Oak Ridge National Laboratory, Oak Ridge, TN, USA

*Corresponding Author. Email: aziz@utk.edu.

Abstract— Conventional computing architectures encounter
‘von Neumann’ and ‘memory wall’ bottlenecks which arise due
to the back-and-forth data movement between the physically
separate memory and processing units and the speed mismatch
between them, respectively. These bottlenecks hurt both energy
efficiency and the throughput of computing systems. To address
these challenges, in-memory computing architectures have
emerged as a promising alternative. They reduce the need for
frequent data movement by executing different computing tasks
inside the memory system. Here, we present UltraLiM, a logic-
in-memory architecture using the UltraRAM-based memory
system. UltraRAM holds the promise of developing a ‘universal
memory’, overcoming the limitations of charge-based memories
thanks to their non-volatile behavior with lower operating
voltage. This work presents an in-memory computing
architecture that integrates an UltraRAM-based memory array
with a custom-designed peripheral circuitry. With this
architecture, we can perform various in-memory Boolean logic
operations (such as NOT, NAND, NOR, and XOR) in a single
cycle. Leveraging the separate read-write paths in the
UltraRAM-based memory array, we optimize read operations
without encountering design conflicts. This optimization
enhances the sense margin, enabling the use of simpler
peripheral circuitry for in-memory logic operations.

Keywords— Boolean logic, in-memory computing, logic-in-
memory, UltraRAM.

I. INTRODUCTION

The rise of artificial intelligence, the widespread use of
portable smart devices, and the prevalence of social media
have led to an unprecedented increase in data volumes.
Coping with the storage and processing demands of this
massive data presents a formidable challenge for engineers.
Furthermore, traditional computing architectures rely on
frequent back-and-forth data transfers between memory and
processing units, a process known for its high energy
consumption [1], [2]. Recent studies by Google indicates that
approximately 20-42% of energy is spent on driving the data
bus responsible for these transfers [3], [4]. Moreover, the
inherent speed mismatch between processing units and
memory often leads to processing units idling while awaiting
data transactions with memory [5]. In response to these
challenges, there is a growing interest in in-memory or near-
memory computing approaches for handling data-intensive
applications [6]–[8]. The fundamental promise of this
approach is to empower the memory system to perform
certain computing tasks. By doing so, in-memory computing
not only reduces the overhead associated with data

979-8-3315-3477-6/25/$31.00 ©2025 IEEE

20
25

 IE
EE

 C
om

pu
te

r S
oc

ie
ty

 A
nn

ua
l S

ym
po

si
um

 o
n

V
LS

I (
IS

V
LS

I)
 |

97
9-

8-
33

15
-3

47
7-

6/
25

/$
31

.0
0

©
20

25
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

V
LS

I6
51

24
.2

02
5.

11
13

03
53

Authorized licensed use limited to: Lancaster University. Downloaded on September 15,2025 at 11:24:24 UTC from IEEE Xplore. Restrictions apply.

We start with an overview of UltraRAM technology,
followed by a discussion on UltraRAM-based logic-in-
memory architecture. Subsequently, we talk about the
simulation framework used in this work. Finally, we present
the simulated results for both memory read and write, and
various in-memory logic operations.

II. ULTRARAM TECHNOLOGY
The UltraRAM device incorporates a triple-barrier

resonant tunneling (TBRT) structure, employing multiple
stacks of InAs quantum wells and AlSb barriers [16]. The
schematic of this device is shown in Fig. 1(a). The unique
TBRT structure enables UltraRAM to reconcile the
conflicting requirements of non-volatility and low energy
consumption, essential for a ‘universal memory’ solution. In
UltraRAM, the storage of logic ‘0’ (‘1’) is performed by
trapping (erasing) electrons into (from) the floating gate
(FG). Due to its low voltage switching capability, non-
volatile nature, and small capacitance, UltraRAM achieves
orders of magnitude lower switching energy than DRAMs
and flash memories [16]. Moreover, UltraRAM boasts
impressive data retention exceeding 1000 years and
endurance surpassing 107 cycles [16].

In UltraRAM, an Al2O3 layer is used to separate FG from
the control gate (CG) and an n-type InAs is used to form the
channel of the device. The TBRT structure is formed by
stacking multiple thin layers of InAs/AlSb between FG and
the channel. In the absence of any bias between CG and BG
(𝑉𝐶𝐺−𝐵𝐺 = 0), the TBRT structure prevents the flow of any
electron to FG. However, when a sufficiently strong bias is
applied (𝑉𝐶𝐺−𝐵𝐺 ≥ 2𝑉), electrons can be trapped into the FG
which is the write ‘0’ operation. Conversely, a bias with
opposite polarity (𝑉𝐶𝐺−𝐵𝐺 ≤ −2𝑉) removes the stored
electrons from the FG which is the write ‘1’ operation.
Therefore, writing the memory state into an UltraRAM
device requires only an appropriate bias to be applied
between the CG and the BG (Fig. 1(b)).

The I-V characteristics of an UltraRAM device is
illustrated in Fig. 1(b), showing that even in the absence of
any bias between the CG and the BG, a certain source-drain
bias (𝑉𝑆−𝐷) can create distinguishable separation between the
channel currents of the device in two logic states. Therefore,

reading the memory state stored in a cell only needs the
application of a suitable 𝑉𝑆−𝐷 while maintaining 𝑉𝐶𝐺−𝐵𝐺 = 0.

III. ULTRALIM: ULTRARAM-BASED LOGIC-IN-MEMORY
In this work, we utilize the UltraRAM-based memory

array reported in [11] to perform in-memory computing. Fig.
2(a) illustrates UltraRAM-based logic-in-memory
architecture. In UltraRAM-based memory array, during the
write operations in a specific cell, we need to apply biases to
the bit lines (BLs) and the write word lines (WWLs) which
will result in the application of the write voltage (𝑉𝑊𝑅𝐼𝑇𝐸)
between the CG and BG contacts of that specific cell. For
read operation in any specific cell of the array, we need to
apply voltage biases to the read word lines (RWLs) and sense
lines (SLs) so that the read voltage (𝑉𝑅𝐸𝐴𝐷) gets applied
between the S and D contacts of the cell. This array benefits
from the use of two separate paths for the read and write
operations.

During the read operation, the value of 𝑉𝑅𝐸𝐴𝐷 dictates the
SL current and the separation between the two state currents
(Δ𝐼𝑆−𝐷). Δ𝐼𝑆−𝐷 , representing the sense margin, directly
influences the scalability, energy efficiency, and area
efficiency of memory and in-memory computing
applications. Δ𝐼𝑆−𝐷 can be increased by applying a higher
𝑉𝑅𝐸𝐴𝐷 . The separate read-write path capability of UltraRAM-
based memory array allows us to optimize the read operation
and improve the sense margin without encountering any
conflict between the read and write operations.

To execute in-memory computing tasks using the
UltraRAM-based memory system, we employ a modified
peripheral circuitry [10], shown in Fig. 2(b), in each column
of the memory array. This circuitry comprises a current
mirror, two current sense amplifiers (CSAs), an inverter, and
an AND gate. It takes the SL current of each column as the
input and generates a binary output based on the level of SL
current and preset reference currents of the two CSAs. Fig.
2(c) presents the schematic of a CSA used in the peripheral
circuitry which was adopted from [17], [18]. The advantage
of this peripheral circuitry lies in its ability to execute both
memory read and various in-memory Boolean logic
operations (NOT, NAND, NOR, and XOR) with the same
setup. We can achieve this versatility by selecting suitable

Fig. 1. (a) Device structure, (b) I-V characteristics (inset shows the symbol), and (c) modeling approach of the UltraRAM device.

Si Substrate

GaSb

InAS

AlSb

GaSb
InAs (Channel)

InAs (FG)

Al2O3

Control Gate (CG)

S D

BG

TBRT

0.32

0.25

0.18

-2 -1 0 1
CG-BG Voltage, VCG-BG (V)

IS-D

S

D

BGCG

(a) (b)

S
-D

 C
u

rr
en

t,
 I

S
-D

(m
A

)

UltraRAM Device

• Current State

Variable Inputs

Constant Inputs

Inputs

Current State?

if (

State = 1;
else State = 0;

if (

State = 0;
else State = 1;

State = 1

State = 0

Updated State?

Choose Model
Parameters

()

Choose Model
Parameters

()

State = 1

State = 0

State Update Module Parameter Selection Output
(c)

Modeling Methodology

Authorized licensed use limited to: Lancaster University. Downloaded on September 15,2025 at 11:24:24 UTC from IEEE Xplore. Restrictions apply.

reference currents for the CSAs. Therefore, we utilize a
reference generator to select the suitable reference currents
for performing different operations.

In computing mode, the read voltage is applied between
the RWLs and SLs, ensuring the application of the necessary
voltage between the S and D contacts of specific UltraRAM
cells for performing computation on the stored data in those
cells. Based on biasing and the memory states stored in the
activated cells, different levels of SL current flow in each
column. Table I presents the truth table for performing in-
memory Boolean logic operations, along with corresponding
SL current levels for different combinations of logic states
stored in the activated cells. Here, 𝐼0 and 𝐼1 represent the
amount of channel current that flows through the UltraRAM

cell storing logic ‘0’ and ‘1’ states, respectively. Now, to
reconfigurably perform both memory read and logic-in-
memory operations with the same peripheral circuitry, we
need to choose the suitable reference currents (𝐼𝑅𝐸𝐹1 and
𝐼𝑅𝐸𝐹2) for the CSAs. Table II outlines the conditions for
selecting suitable values of 𝐼𝑅𝐸𝐹1 and 𝐼𝑅𝐸𝐹2 to execute
memory read-write and various logic operations.

During memory read and NOT operations, only one cell
is activated while NAND, NOR, and XOR operations require
activation of two cells. The current contribution of activated
cells is fed into the peripheral circuitry which sets the gate
voltage of a specific transistor in each CSAs. Comparison of
these voltages with reference voltages produces binary
outputs. Among these operations, only one CSA is sufficient
to execute memory read, NOT, NAND, and NOR operations.
Therefore, we choose 𝐼𝑅𝐸𝐹1 and 𝐼𝑅𝐸𝐹2 in a way so that one of
the CSAs always provides logic ‘1’ output and the other CSA
provides the output of the intended operation. Finally, after
performing the AND operation between the outputs of the
two CSAs, the peripheral circuitry generates the final output
for the performed operation. To perform the XOR operation
in single cycle, we utilize the complete capability of the
peripheral circuitry. Here, two complementary reference
currents are chosen for the two CSAs to separate out the logic
‘01’ and ‘10’ combinations from the others.

IV. SIMULATION FRAMEWORK
To simulate the UltraRAM-based in-memory logic

operations, we develop a simulation framework in HSPICE.
To accurately replicate the characteristics of UltraRAM
devices, we utilize a Verilog-A-based compact model from
[11]. Fig. 1(c) provides an overview of the modeling
approach. The model utilizes a modified version of the

Table I: Truth Table for Logic-in-Memory Operations

𝒙𝟏 𝒙𝟐 SL Current (𝑰𝑺𝑳)
Logic Operations

NAND NOR XOR

0 0 𝐼00 = 2 × 𝐼0 1 1 0

0 1 𝐼01 = 𝐼0 + 𝐼1 1 0 1

1 0 𝐼10 = 𝐼1 + 𝐼0 1 0 1

1 1 𝐼11 = 2 × 𝐼1 0 0 0

Fig. 2. (a) Schematic of the UltraRAM-based logic-in-memory architecture. Schematics of the (b) designed peripheral circuitry and (c) a current sense
amplifier.

I S
L

1

RWL1

RWL2

RWL3

I S
L

2

I S
L

3

SA

SA

Out1
SEN

R
ef

er
en

ce
 G

en
er

at
o

r

opcode

I
R

E
F

1

IREF1-READ

IREF1-NAND

IREF1-NOR

IREF1-XOR

M
U
X

I
R

E
F

2

M
U
X

IREF1-READ

IREF1-NAND

IREF1-NOR

IREF1-XOR

SA

SA

Out2
SEN

SA

SA

Out3
SEN

WWL1

WWL2

WWL3

BL1

BL2 BL3

C
u

rr
en

t
S

en
se

 A
m

p
li

fi
er

S
en

se
 A

m
p

li
fi

er

Table II: Conditions for Choosing Reference Currents

Operations Condition for 𝑰𝑹𝑬𝑭𝟏 Condition for 𝑰𝑹𝑬𝑭𝟐

Read 𝐼0 < 𝐼𝑅𝐸𝐹1 < 𝐼1 𝐼𝑅𝐸𝐹2 > 𝐼1

NOT 𝐼𝑅𝐸𝐹1 < 𝐼0 𝐼0 < 𝐼𝑅𝐸𝐹2 < 𝐼1

NAND 𝐼𝑅𝐸𝐹1 < 𝐼00 𝐼01 < 𝐼𝑅𝐸𝐹2 < 𝐼11

NOR 𝐼𝑅𝐸𝐹1 < 𝐼00 𝐼00 < 𝐼𝑅𝐸𝐹2 < 𝐼01

XOR 𝐼00 < 𝐼𝑅𝐸𝐹1 < 𝐼01 𝐼01 < 𝐼𝑅𝐸𝐹2 < 𝐼11

Authorized licensed use limited to: Lancaster University. Downloaded on September 15,2025 at 11:24:24 UTC from IEEE Xplore. Restrictions apply.

Boltzmann growth function to mimic the I-V characteristics
of UltraRAM devices. The function is as follows-

 𝐼𝑆−𝐷(𝑉𝐶𝐺−𝐵𝐺 , 𝑉𝑆−𝐷) =
𝑉𝑆−𝐷

𝑉𝑆−𝐷
0 × [

𝐴1−𝐴2

1+𝑒

𝑉𝐶𝐺−𝐵𝐺−𝑉𝐶𝐺−𝐵𝐺
0

𝑑𝑥

+ 𝐴2] (1)

 Here, A1 and A2 are fitting parameters. The values of
different parameters of equation (1) for two states of the
device are outlined in Table III. The model was calibrated
with the experimental I-V characteristics of UltraRAM
device reported in [16]. For simulating the CMOS transistors
(FinFETs) used in the peripheral circuitry, we adopt 14 nm
PTM (Predictive Technology Model) [19] transistors.

V. SIMULATION RESULTS
Using our developed simulation framework, we first

showcase simulated results for memory write operations of
the UltraRAM-based memory system, focusing on a
3 × 3 array. To perform various in-memory computing
operations, we need to program the memory array by writing
specific memory state into specific cells of the array.
Therefore, we demonstrate how to perform the write
operation into a specific cell (1, 1) in Fig. 3. For writing into
a specific cell, we adopt the 𝑉/2 biasing scheme [20] for the
BLs and WWLs. Specifically, to write into the (1, 1) cell, we
apply 𝑉𝑊𝑅𝐼𝑇𝐸 (±2.3 𝑉) to BL1 and 𝑉𝑊𝑅𝐼𝑇𝐸

2
 (±1.15 𝑉) to other

BLs. Additionally, we apply 0 V to WWL1 and 𝑉𝑊𝑅𝐼𝑇𝐸

2
 to

other WWLs. As shown in Fig. 3(a) and (b), this biasing
scheme ensures that the (1, 1) cell receives 𝑉𝑊𝑅𝐼𝑇𝐸, while the
half-accessed cells (those in the same row or same column as
the accessed cell) receive 𝑉𝑊𝑅𝐼𝑇𝐸

2
 (insufficient to alter their

states), and unaccessed cells receive 0 V between the CG and
BG contacts. It is noteworthy that before applying biases for
write ‘0’ (‘1’) operations, all cells are initialized to logic ‘1’
(logic ‘0’) state. To verify successful write operations, we
apply a 𝑉𝑆−𝐷 of 0.2 V via RWLs and SLs (not necessary for
the write operation). Fig. 4(c) and (d) show switching of the
channel resistance during the two write operations. For the

Fig. 3. Transient dynamics of voltage between the CG and the BG
contacts of UltraRAM cells in the array during (a) write ‘1’ and (b) write
‘0’ operations. Switching of the channel resistance of UltraRAM devices
during (c) write ‘1’ and (d) write ‘0’ operations.

Time (ns)
0 5 10 15 20

0

1

2

V
C

G
-B

G
 (V

) Accessed

Half
Accessed

Unaccessed

300

310

320

330

R
es

is
ta

n
ce

 (
)

Unaccessed

Half
Accessed

Accessed

‘0’ ‘0’

‘1’

Time (ns)
0 5 10 15 20

-2

-1

0

V
C

G
-B

G
 (V

)

Accessed

Half
Accessed

Unaccessed

300

350

400

450
R

es
is

ta
n

ce
 (

)

Half
Accessed

Accessed

Unaccessed

‘1’
‘0’

‘1’

Write ‘1’ Operation Write ‘0’ Operation

(a) (b)

(c) (d)

Fig. 4. (a) Programming of the memory array to execute memory read and in-memory NOT operations. (b) Voltage biases applied to RWLs and SEN to
activate the required cells. (c) SL current levels corresponding to the stored states in the activated cells. Outputs of the peripheral circuitry during (d) memory
read and (e) in-memory NOT operations from the first and second columns, respectively.

Time (ns)
0 10 20

0.6

V
o

lt
ag

e
(V

)

0.3

0
1

0.5

0 V
o

lt
ag

e
(V

)

30

RWL2,3
RWL1

SEN

1.95

S
L

 C
u

rr
en

t
(m

A
)

1.85

1.75

Time (ns)
0 10 20 30

ISL1 (‘0’)

85

VDD

O
u

tp
u

t

0

Time (ns)
0 10 20 30

VDD

0

Time (ns)
0 10 20 30

O
u

tp
u

t

Out1 Out2 Out1 Out2

Read NOT

(b)

(d)

(c)

(e)

VREAD

0

0

I11

SA

SA
IREF1
IREF2

Out1

SEN

SA

SA
IREF1
IREF2

Out2

SEN

SA

SA
IREF1
IREF2

Out3

SEN

I S
L

1

0 1

I S
L

1

ISL2 (‘1’)

Biasing and Array Scenario Simulated Results

(a)

Table III: Values of Different Model Parameters.

Parameters State = 1 State = 0

A1 0.19196 0.19259

A2 0.32938 0.32979

𝑉𝐶𝐺−𝐵𝐺
0 -1.35027 -0.81267

dV 0.45746 0.47148

Authorized licensed use limited to: Lancaster University. Downloaded on September 15,2025 at 11:24:24 UTC from IEEE Xplore. Restrictions apply.

same 𝑉𝑆−𝐷 , the cell storing logic ‘1’ shows lower channel
resistance than the cell storing logic ‘0’.

We proceed to demonstrate the simulation of in-memory
Boolean logic operations. First, we simulate memory read
and in-memory NOT operations utilizing the designed
peripheral circuitry shown in Fig. 2. To demonstrate the read
and NOT operations, we activate (1, 1) and (2, 1) cells in the
array and tore logic ‘0’ and ‘1’ into these cells, respectively
(Fig. 4(a)). To activate these cells, we apply a 𝑉𝑅𝐸𝐴𝐷 of 0.6 V
with the help of RWLs and SLs (Fig. 4(a) and (b)). This
results in two distinct levels of current in the corresponding
SLs (SL1 and SL2) for the two memory states (Fig. 4(c)). To
perform both memory and computing operations with the
same peripheral circuitry, careful selection of 𝐼𝑅𝐸𝐹1 and 𝐼𝑅𝐸𝐹2
is necessary. For memory read and in-memory NOT
operations, we choose 𝐼𝑅𝐸𝐹1 = 1.9 𝑚𝐴 and 𝐼𝑅𝐸𝐹2 = 2 𝑚𝐴 ,
and 𝐼𝑅𝐸𝐹1 = 1.8 𝑚𝐴 and 𝐼𝑅𝐸𝐹2 = 1.9 𝑚𝐴, respectively.
Upon activating the sense enable (SEN) signal of the CSAs
in the peripheral circuitry, each CSA generates logic ‘0’ or
‘1’ output based on the comparison between the SL current
and the set reference current. Using the outputs of the two
CSAs, the peripheral circuitry generates the final output for
the performed operation as shown in Fig. 4(d) and (e). Here,
the peripheral circuitry of first and second columns (Out1 and

Out2, respectively) generates the final output of these
operations for logic ‘0’ and ‘1’ state, respectively.

Next, we simulate the 2-input logic operations such as
NAND, NOR, and XOR by activating the first two rows in the
array through the application of appropriate biases to the
RWLs (Fig. 5(a)). Here, we program the cells in the activated
rows in a way so that the first, second, and third columns
correspond to logic ‘00’, ‘01’ or ‘10’, and ‘11’ conditions,
respectively. The required biasing condition to activate the
rows is shown in Fig. 5(c). Now, due to the biasing and
programing of the memory array, we get different levels of
current in the corresponding SLs (SL1, SL2, SL3) for different
combinations of logic states (‘00’, ‘01’ or ‘10’, and ‘11’,
respectively) of the activated cells (Fig. 5(d)). A sense margin
of 85 𝜇𝐴 is obtained between the adjacent current levels.
Then, again to configure the peripheral circuitry for different
logic operations, we need to choose suitable values for
𝐼𝑅𝐸𝐹1 and 𝐼𝑅𝐸𝐹2 . Fig. 5(b) outlines the values of 𝐼𝑅𝐸𝐹1 and
𝐼𝑅𝐸𝐹2 used in this work for executing different logic
operations. When SEN is enabled, the peripheral circuitry
generates the final binary output for the executed operations
with the help of two CSAs (Fig. 5(e)-(g)). Here, for the logic
operations, the peripheral circuitry of the first three columns
show the outputs corresponding to different logic
combinations of the activated cells.

Fig. 5. (a) Programming of the memory array and (b) the selected values of the reference currents for the two CSAs in the
peripheral circuitry to execute in-memory NAND, NOR, and XOR operations. (c) Voltage biases applied to RWLs and SEN to activate the required cells.
(d) SL current levels corresponding to the stored states in the activated cells. Outputs of the peripheral circuitry during in-memory (e) NAND, (f) NOR, and
(g) XOR operations.

VDD

O
u

tp
u

t

0

Time (ns)
0 10 20 30

VDD

0

Time (ns)
0 10 20 30

O
u

tp
u

t

IREF2IREF1Operation

NAND

NOR

XOR

VDD

0

O
u

tp
u

t

NAND

Out3

Out1

Out2

NOR XOR

(c)

(f)

(e)

(g)

0.6

0.3

0
1

0.5

0 V
o

lt
ag

e
(V

)

RWL3
RWL1,2

SEN

3.8

S
L

 C
u

rr
en

t
(m

A
)

3.7

3.6

Logic ‘0’

Logic ‘1’

100

3.9

ISL1 (’00’)
ISL2 (‘01’)

ISL3 (‘11’)

85

85

Biasing and Array Scenario

V
o

lt
ag

e
(V

)

VREAD

VRERAD

0

I11

SA

SA
IREF1

IREF2

Out1

SEN

SA

SA
IREF1

IREF2

Out2

SEN

SA

SA
IREF1

IREF2

Out3

SEN

I S
L

1

0 0

I S
L

2

0 1

1

1

I S
L

3

Simulated Results

(a)

(d)(b)

Out3

Out1

Out2

Out3

Out1

Out2

Authorized licensed use limited to: Lancaster University. Downloaded on September 15,2025 at 11:24:24 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSION
 In this work, we introduce an innovative in-memory

computing architecture tailored for UltraRAM-based memory
technology. Central to our framework is the development of a
novel peripheral circuitry capable of dynamically executing
memory read operation and a spectrum of in-memory Boolean
logic operations, including NOT, NAND, NOR, and XOR.
This circuitry's adaptability enables seamless transition
between memory-centric tasks and computational operations,
all within a single cycle. A key advantage of our approach lies
in its ability to unify memory and logic functionalities,
streamlining computational processes and reducing overall
complexity. Furthermore, we demonstrate how the distinct
read-write path feature inherent in UltraRAM devices can be
harnessed to optimize read operations, thereby enhancing the
efficacy of in-memory computing tasks. Through this
integrated framework, we unlock the full potential of
UltraRAM technology, paving the way for efficient and
versatile computing paradigms that transcend traditional
memory architectures.

ACKNOWLEDGEMENT
This research was supported in part by seed funding from

the AI Tennessee Initiative at the University of Tennessee,
Knoxville.

S. A. was supported with funds provided by the Science
Alliance, a Tennessee Higher Education Commission center
of excellence administered by The University of Tennessee-
Oak Ridge Innovation Institute on behalf of The University
of Tennessee, Knoxville.

This manuscript has also been authored in part by UT-
Battelle, LLC under Contract No. DE-AC05-00OR22725
with the U.S. Department of Energy. The publisher, by
accepting the article for publication, acknowledges that the
U.S. Government retains a non-exclusive, paid-up,
irrevocable, worldwide license to publish or reproduce the
published form of the manuscript or allow others to do so, for
U.S. Government purposes. The DOE will provide public
access to these results in accordance with the DOE Public
Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

REFERENCES
[1] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,

“Memory devices and applications for in-memory computing,” Nat.
Nanotechnol. 2020 157, vol. 15, no. 7, pp. 529–544, Mar. 2020, doi:
10.1038/s41565-020-0655-z.

[2] S. Alam, M. M. Islam, M. S. Hossain, A. Jaiswal, and A. Aziz,
“CryoCiM: Cryogenic compute-in-memory based on the quantum
anomalous Hall effect,” Appl. Phys. Lett., vol. 120, no. 14, p. 144102,
Apr. 2022, doi: 10.1063/5.0092169.

[3] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,”
in Proceedings of the 42nd Annual International Symposium on
Computer Architecture, 2015, pp. 158–169, doi:
10.1145/2749469.2750392.

[4] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu, R.
Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu,
“Google Workloads for Consumer Devices: Mi-tigating Data
Movement Bottlenecks,” Proc. Twenty-Third Int. Conf. Archit.
Support Program. Lang. Oper. Syst., vol. 18, 2018, doi:
10.1145/3173162.

[5] M. Lee, W. Tang, B. Xue, J. Wu, M. Ma, Y. Wang, Y. Liu, D. Fan,
V. Narayanan, H. Yang, and X. Li, “FeFET-Based Low-Power
Bitwise Logic-in-Memory with Direct Write-Back and Data-Adaptive
Dynamic Sensing Interface,” Proc. ACM/IEEE Int. Symp. Low Power
Electron. Des., 2020, doi: 10.1145/3370748.

[6] W. Kang, H. Wang, Z. Wang, Y. Zhang, and W. Zhao, “In-Memory
Processing Paradigm for Bitwise Logic Operations in STT-MRAM,”
IEEE Trans. Magn., vol. 53, no. 11, Nov. 2017, doi:
10.1109/TMAG.2017.2703863.

[7] S. Alam, J. Hutchins, M. S. Hossain, K. Ni, V. Narayanan, and A.
Aziz, “Cryogenic In-Memory Matrix-Vector Multiplication using
Ferroelectric Superconducting Quantum Interference Device (FE-
SQUID),” in 2023 60th ACM/IEEE Design Automation Conference
(DAC), 2023, pp. 1–6, doi: 10.1109/DAC56929.2023.10247669.

[8] D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive
switching devices,” Nat. Electron. 2018 16, vol. 1, no. 6, pp. 333–343,
Jun. 2018, doi: 10.1038/s41928-018-0092-2.

[9] X. Xin, Y. Zhang, and J. Yang, “Reducing DRAM access latency via
helper rows,” Proc. - Des. Autom. Conf., vol. 2020-July, Jul. 2020,
doi: 10.1109/DAC18072.2020.9218719.

[10] S. Alam, J. Hutchins, N. Shukla, K. Asifuzzaman, and A. Aziz,
“CMOS-based Single-Cycle In-Memory XOR/XNOR,” ArXiv
Prepr., Oct. 2023.

[11] S. Alam, K. Asifuzzaman, and A. Aziz, “A Novel Scalable Array
Design for III-V Compound Semiconductor-based Nonvolatile
Memory (UltraRAM) with Separate Read-Write Paths,” Proc. - Int.
Symp. Qual. Electron. Des. ISQED, vol. 2023-April, 2023, doi:
10.1109/ISQED57927.2023.10129314.

[12] H. S. P. Wong and S. Salahuddin, “Memory leads the way to better
computing,” Nat. Nanotechnol. 2015 103, vol. 10, no. 3, pp. 191–194,
Mar. 2015, doi: 10.1038/nnano.2015.29.

[13] Z. Shen, S. Srinivasa, A. Aziz, S. Datta, V. Narayanan, and S. K.
Gupta, “SRAMs and DRAMs with separate read-write ports
augmented by phase transition materials,” IEEE Trans. Electron
Devices, vol. 66, no. 2, pp. 929–937, Feb. 2019, doi:
10.1109/TED.2018.2888913.

[14] J. Åkerman, “Toward a universal memory,” Science (80-.)., vol. 308,
no. 5721, pp. 508–510, Apr. 2005, doi:
10.1126/SCIENCE.1110549/ASSET/E79FD10E-DE66-4D47-90D3-
7D61F65F68F1/ASSETS/GRAPHIC/508-1.GIF.

[15] M. Hayne, “Electronic memory devices,” US10243086B2, 2019.
[16] P. D. Hodgson, D. Lane, P. J. Carrington, E. Delli, R. Beanland, M.

Hayne, P. D. Hodgson, D. Lane, M. Hayne, P. J. Carrington, and E.
Delli, “ULTRARAM: A Low-Energy, High-Endurance, Compound-
Semiconductor Memory on Silicon,” Adv. Electron. Mater., vol. 8,
no. 4, p. 2101103, Apr. 2022, doi: 10.1002/AELM.202101103.

[17] M. F. Chang, S. J. Shen, C. C. Liu, C. W. Wu, Y. F. Lin, Y. C. King,
C. J. Lin, H. J. Liao, Y. Der Chih, and H. Yamauchi, “An offset-
tolerant fast-random-read current-sampling-based sense amplifier for
small-cell-current nonvolatile memory,” IEEE J. Solid-State Circuits,
vol. 48, no. 3, pp. 864–877, 2013, doi: 10.1109/JSSC.2012.2235013.

[18] M. M. Islam, S. Alam, M. A. Jahangir, G. S. Rose, S. Datta, V.
Narayanan, S. K. Gupta, and A. Aziz, “Reimagining Sense
Amplifiers: Harnessing Phase Transition Materials for Current and
Voltage Sensing,” ArXiV Prepr., Aug. 2023, doi:
10.48550/arXiv.2308.15756.

[19] “Arizona State University Predictive Technology Models.” [Online].
Available: http://ptm.asu.edu/.

[20] S. Alam, M. S. Hossain, and A. Aziz, “A non-volatile cryogenic
random-access memory based on the quantum anomalous Hall
effect,” Sci. Rep., 2021, doi: 10.1038/s41598-021-87056-7.

Authorized licensed use limited to: Lancaster University. Downloaded on September 15,2025 at 11:24:24 UTC from IEEE Xplore. Restrictions apply.

